skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McCall, Laura-Isobel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Metabolites are critical products and mediators of cellular and tissue function, and key signals in cell-to-cell, organ-to-organ and cross-organism communication. Many of these interactions are spatially segregated. Thus, spatial metabolomics can provide valuable insight into healthy tissue function and disease pathogenesis. Here, we review major mass spectrometry-based spatial metabolomics techniques and the biological insights they have enabled, with a focus on brain and microbiota function and on cancer, neurological diseases and infectious diseases. These techniques also present significant translational utility, for example in cancer diagnosis, and for drug development. However, spatial mass spectrometry techniques still encounter significant challenges, including artifactual features, metabolite annotation, open data, and ethical considerations. Addressing these issues represent the future challenges in this field. 
    more » « less
  2. Free, publicly-accessible full text available May 12, 2026
  3. null (Ed.)